pH X52API 5L
! “# $ 21*

%&’
. / 0 12 pH& %’( ) * +, $-,API 5L X52 ! “# $ %
%’8 /9 : ;<( = :7 1- 26 0- -;2 !# 4 -7%1 ># 56 [email protected]) 2’) A’2 3) 4 56 5% +!7% 5 % -9 4% D / E F 5% G:H I:7 ) % C ( [email protected]) 2’) A’2 3) 4 56 .’ @) D% J-;2 !# J-!)% ;<( 5% ) , 46 5% J , K !2 ( /! ’ ’L2 / -7 ;, / 4 -7%1 ># 4 56 46 % M’ M 2 ! 5 7 /-N( L . ’ ) D% J-;2 !# ’ ;<(
) 5 7 ?&7 ! @) D% J-;2 !# /) % 4 32 J, K !2 . ( O P2% /!; 6 G ’7 A’2 Q- ’
S8 $ T ?’ ) D% J-;2 !# 26 E> 2% ?X52 6’ QR . ( . / 0 12 pH &- ( ’)V ;<( 5 ’ J D 2U – ’ # ?

[email protected]) 2’) A’2 3) 4 56 ?) * +, ? . / 0 12 pH ?X52 ? :
.0- -;2 !# 4 -7%1 >#

.5%’-( Z32% – % 7 Y !7% -1
.5%’-( Z32% ? % 7 Y ? * +, ( % 7 ( ) P32% -2 [email protected] :/ H E [; ; 2 -*
4U – ? ’ ,% 2 4U – 4 ( 0-7>)’-R ) 5 7 @ 3H2
5% b 2 $ % .[10]) 5
’c% ?% ’ ’ E % ! & %’( / \ :
I:7 – 5’ 5 v6 w ( # 4 ( /!;<(
.[11] ! % x + % /
%’ 9! 56 Z3 56 & %’( 5% /) % / -7 ;, 5 % E F 5% ?6 c 4 56 / 4% /] 46
/2 2 ?9 – /]- [email protected]) 2’) A’2 3) ?7c % .[12] 2 (% 11J<( C 10J<( U
– -# 2% <-2 < 4 56 )y
/ -7 ;, O D -7 ;,
4 56 ?’F 5% .( z ’+ &- 0
0–;2 !# 4 -7%1 ># 4 56 ’-L2 – -( ’!<%
) 5 7 42 <(6 2% 5% /) 2 %
? 2 { 6’ 0 ’-
5% O| +!7% ?$ %’ .[15 -13] !; % ’
( 2% – -( ’!<% <-2 < 4 56
/ -7 ;, – -# -+
. ( / 42 :- & %’(
! 7 ’ “# $ % }
0 12 pH 6 &- API-5L-X52
5% +!7% ) J-;2 !# ’-cd . /
5 % [email protected]) 2’) A’2 3) ~
;<( = :7 # <7 ’<- /9 : – -( ’!<% E H!2% \ : / – 5 9-7 ’ ) )y U -6 .(
2%’Z2 /!(% 4%’ % >7% 5
. % / 46 -7 ;,
/ 2% /)) / & ( # 13%
5% < (P2 – . / 0 12 pH

Constant Load.
Constant Elongation.
Slow Strain Rate Test (SSRT).
9 -Bent Beam.
U-Bend.
C-Ring.
Slow Strain Rate Test (SSRT). 13 -Disbonding.
()*
1- 6 ’F Y 6’ 1 M 4 5 +2 / \ : $ % ’<] D & 5% $-!;Y2 . 3
?/! @ .[1] % -# / ^ _ N ’H /
%’8 5% b 2 ’-cd / \ :
: 2’-
?[2]2 pH •
,3]3. / 0 12 pH •
.[4
&- _9 pH
(HCO3- – CO32-) C ’) -C ’<- L]R J-;2 !# 5% < -; pH ≈ 9 -11?
-550 ) A – -( ’!<%
.( % /2% $- / ’P (- 650mVSCE
” 4% D / pH 5%
Q R ) 5 7 .[5]( “0-7>)
/2% 5’ 26 E> 2% ? b 2 $ %
( M’ M 2 -;# / # # 4 ( /!;<(
.[6]
/ 5% +! b 2 ?1985 E 7 C 9 : . ( ’9 4% 2 ) / \ : )’( /]-7 o ’D %/2% 4 M’ /) % 4 32 4% %’
” 5% M’ % ;<( I:7
5% b 2 $ % .[8 ,7] ( 5% b 2 $ %
0 12 pH ?
O 2 “0-7>) ’-R ” . / q, 9-NF 5 E H!2% \ : [7]’ 4 L]R) r-8 4″-;)% 5% D – ’!<% . pH≈6-7/5 (0/01 M , C ’< / 5C + 7 ) -,% ’!) $’) -;)%
5% .[9 ,7] 2% ( ’9 46 b 8 ’ct J % D 4% D /!( N2% uD ) J-;2 !# $- # pH /) 46

1 -Stress Corrosion Cracking (SCC)
High-pH SCC
Near-neutral pH SCC
Trans Canada Pipe Lines (TCPL)
Sulfate-reducing Bacteria (SRB)
0 ] 7 MetrohmµAutolabTypeIII / X52 5% 46 /) ( O P2% ’!<% /7 E ]7 4% D / ’H2 ’])- ’H2 ’!<% ? ) ’!<% 4% D < ) ’!<% 4% D / $- ># ’!<% G ’ ’!<% 4 56 $ % J-;2 !# A ’2 . ( +!7% ’%’ ) /-, 2 I:7 . 50mV/s 0/5mV/s
46 5% # – # 1000 N 7 /) 0/503cm2
H . ( % 3!;( $!7% ’:H v6 /]-7 /
L ( )r D ) /-, 2 1 / = :7
24 C / /22 ? %# , / 4 -7
4 0–;2 !# 56 b ’( 5% -# D 7
56 .’ /F R – ’!<%
. ( O P2% (≈25˚C)&- – -( ’!<%

.#
6 ” + 7+ , “8 9 :; QN7 /) . :- 4% D / % ? “# $ %
?’ 2 X52 5 ’
/2 2 2’) – 2J<( . ( v Y!2% 4 2 ( 1 ># J -;2 !# ( 56 /) /2 4 . 4 32 % NS4 E ]
E F 5% ?D% J-;2 !# %1 % ?( /L,>
O < !7% /), 7% %’ ) /22
3 4%’ % 5 rF / \ : O%2% J
.

,- +,
API- % 2 5% / 0 5% 56 / 22
/ F !7% ~’ . ( ’ 5L-X52 6 1E $ % – -( Q-)’ . (% %’8 A’2 3) 4 56 O P2% /2 2 7 . 7% (
NACE- TM0198 % 2 !7% r : @) 2’) &- 5 7 /-N( L .(1J<() ’ C [16] ( +!7% NS4 E ] 5% . / 0 12 pH pH ? 56 b ’( 5% -# $’) -;)% 5 NS4 E ] – -( Q-)’ . ( 2 7 6/8 / E ] 4 56 /2 2 I:7 .[5] 7% ( ’)V 2E
/ ( – # 1000 N 7 @) 2’) A’2 3) NS4E ] 4 4 56 b ’( 5% -# D 7 48 C
E D% . ’ %’8 ) * +, ( % %’8 1-2 @) 2’) A’2 3) 4 56 $-, ) * +, ) * +, ( E D% J-;2 !# . (% / % %
]- -2000 – 1500? -1200? -950? -785 4 56 . ’H2 ’]) – ’H2 G ’ ’!<% / N;2 O ! 7 3) Z!7 /]-7 @) 2’) A’2 3)
.( 2 ’– ^ 4%^ 33) ’%’ c 4 56 $ % ( E D%
12’) A’2 . ( O P2% 4%’ % 7 TM-150 E
/ /2 2 -7 ;, 7 ’ L ) C ( ? . / 0 12 pH E ]
(IR)6G:H I:7 ) C ( ? (Iσ) 33) O < !7%
46 K !2 /) ( /N7 (IE)E F 5% ) C ( C / IE IR ? Iσ . 7% ( % 4 32 3J<(
:[13] ( S ’9 ’ 5

(1)

(2)

25˚C 56 . 1.31×10-5 (s-) I:7 [email protected]) 2’) A’2 3) 4 56 5% #. ( O P2%
( 1- $!7% 4 %’ ~ / /2 2 2 ’!<% <7 ’<- /]-7 ;<( = :7 U
. ( 7 ’ 3
’ @) , ) 5 7 $–9 L / / % %
E D% $-, X52 6’
– -( ’!<% 4 56 5% ?) 4 -7%1 >#
$ % .[15 -13] ( +!7% 0- -;2 !# 4 -7%1 ># C !7% 2% /C !7% -;2 !# Z!7 5% +!7% 4 56 ?(-950 mVAg/AgCl -785) @) D% J-;2 !# %’ / J-!)% ;<( 0 5% ) , I:7 U v-4J<() ( 1 ’+, 5% G-7 9 5 / ) -7 ;, ? $ % ?$ %’ .(-4 ) J-;2 !# %1 % . %
/ ( J! ’ ;<( / ;<( b 2 ?D%
( + -;) 5 D% J-;2 !# /) %/2
;<( 0 ?(-2000 mVAg/AgCl -1500) $ % .( -4 -4J<() ( / % ’ _> )
/ 5 -; -7 ;, & %’( -950 $- J-;2 !# .%
’ * ?( -1200mVAg/AgCl 2 ) -1500mVAg/AgCl
( J-!)% ’ ;<( 5% N-)’ ;<( ) 5 7 ’– ?5 E !,% / .( -4J<()
% ’! % # ) uD & %’( $ %
.(3J<() 7% /!-]-!)%

’+*BA 9:;
pH & %’( X52 4 -7%1 ># % 2 . 7% ( -3) ’ / 5 J<( . / 0 12 4 56 ? ( (% ’ -# /) /2 4
A’2 0–;2 !# 4 -7%1 ># – -( ’!<%
O P2% (50 mV/s) G ’7 (0.5 mV/s) /!; 6
26 J-;2 !# 7 / J-;2 !# ( 2 3 4% 5 J<( .[15-13] (Q-P2) ! ’ ’-Z 3^ ’-cd A’2 ’– /) A’2 ’ ? $ % 7% /!(% 4 -7%1 ># 3 $- -E 9 %y # ?G ’7 /!; 6 ’!<% ? 26 J-;2 !# 32
. 4 32 5% E 9 !

/
NS4 C& X52 ! ’() ’+*BA
X52 ] % 26 ) )%
.$ 6 ;)% 4″-;)% -,% 5% ND NS4 E ]

(3)
:5% ND Q- ’ / : EE RE ? σE &% $ % E F 5% G:H I:7 ) ? 33) O < !7%
) * +, – ’!<% D% J-;2 !#
G:H I:7 )? 33) O < !7%: E0 R0 ?σ0
. ( % ( ’- 5% 2% E F 5%
’ ?( ’ 0 12 D / ’! % # /^’
) / ’- -7 ;,
-7 ;, /2 32 ? 2 ( ’ 0 12 ’+ D / /^’
/ D $ % 5% .!; / ’ @)
D / J $ ’ – 9
/ J O D 9 / ’+
3J<( /) /2 4 . ( 7 ’ & ’ + ) D% J-;2 !# %1 % ? ( 3 mVAg/AgCl -785 (J-;2 !# 4 ( . ) % -# %1 %IE IR ?-1200
% -# ) ’! % # ’ -1500 mVAg/AgCl -1200
5% ’ + ( 1 ># J-;2 !# ’)
?$ %’ . %1 % ’Z -1500 mVAg/AgCl
& %’( X52 / -7 ;,
J-;2 !# / % – -# Z!;% . / 0 12 pH
Liu /! Q]: $ % . % D% )
NS4 E ] X70 [14] 4% <
D% J-;2 !# / N;2 Iσ M 2% C%’– . % H :
O < !7% ’ D% J-;2 !# /) 7% Q]: $ % ’Z2 Iσ /) 46 5% ?$ % ’ 4 1 % . 7% ’-cd 33) ’– %y ? 7% ’ 0^ ) -; IE IR / N;2
, C%’– _ %1% / J
. [13] ;-2 %’ 33) O < !7%

7+ , “8 9:; : = ! >[email protected] A !
6 ” +
2 ’!<% <7 ’<- &7 ( /- ’ 4J<( 4 56 5% #X52 ;<( = :7 / \ ’ 3
. 4 32 % NS4 E ] @) 2’) A’2 3)
C%’– D% J-;2 !# ’– /) ’ 3
. 7% %’ ;<( ” ’-Z 3^ 7% , $ % . % %’8 9 ’-R – -( ’!<%
C 5% % / &7 M’ % /) / $ % ’ 5 -( ’!<% )% ( -( # .[14] 7% O P2% E , E 9 / 0 12 & %’( ’Z2 – Q- ’ / G ’7 /!; 6 A’2 ?$ %’
$-, M’ M 2 % & %’(
) 5 7 ?4 2 & %’( .[15-13] !; C , 4 – }>! % ?%y ? !; ’- +!
) 5 7 2% M’ % M 2 – -( ’!<%
% 6’ ) ) 3 ()
) 5 7 ’! M L / . 5 7 $(
/ 46 / ( E D% J-;2 !# ? X52
46 /) 7% ’ Y3 5J<( $-^ & C
.) @-;H ] % /-, 2 ^ / %
’ Q-P2 -; J-;2 !# /) ;Y2 /-, 2
M 2 % ? ( -780mVAg/AgCl 5% (’ 26)
) 5 7 ?%y . 2 % %’8 26 E> 2% , M’
. ( 26 E> 2% & %’( $ %
M 2 ?( -1000 mVAg/AgCl -780) O /-, 2
M’ % /) , 7% 26 E> 2% E , M’ 4 2 J- . % %’8 ) 4 -7%1 >#
?/-, 2 $ % (’ + ) ’ ) ’ H 7 / J-;2 !# 46 ) /!; 6 4 ’ /!-;2% %1 % -,% A’2 ? $ % 5% .’ 3 G ’7
A’2 /! %1 % M’ % ’ 4U . ( %’ ) M’ M 2 $ 6 4 -7% -;)%
%1 % -1000mVAg/AgCl -780 ?%y
E> 2% ’ %’ 2U – ’ H2 ? ) 4 -7%1 ># 4 32 3J<( /) F4 ( ’ 2 ’# 26 / -7 ;, ?IE IR %1 % J- v ? 7% ( %
. 7% %’ %1 % /-, 2 $ % J-;2 !# 5% $ % ;<( I:7 U
0 5% ) , /) ( 3 -4 v-4J<( @ % /) 7 9 4% $ % ( J-!)% ;<(
) 3 ?) 4 -7%1 ># ’c% ’ ( – 4U-
4 ’ /!-;2% J- / . 2% /!(% O%2% 6’ ) 2%
J D ?/!; 6 / N;2 G ’7 ’ –
? NS4 E ] (CO2) $’) -;)% 5
)% ?%y .( – (H2CO3) 0- ’) -7%
)% $ % .[5] ( 4U- -,% ’Z )
: 7% ( 6 / % %
O2+ 2H2O + 4e–

4OH– (4)
26063123416

Fe Fe2+ + 2e– (5)
H2CO3 + e– H + HCO3– (6)
Fe2+ 4 L]R ?(6/8) E ] pH / /
C ’<- 4 q, /:7% / /! %1 % E ] J<( / C 5% %/ ?E ] 4
/:% /]-7 / ’) v 7 I:7 FeCO3
. ) % ’ 5
Fe2+ + HCO3–

FeCO3 + H+ (7) pH & %’( ( J-<3 FeCO3 / /) 46 5%
? % ) N;^ JY]Y! . / 0 12
O H $- / 0 / 46 ) * +, C8
.[13];-2

“#$ %&$ ’( ) : @ : %’( ?/!; 6 A’2 J-;2 !# $-,
$-, & %’( $ % /)Z .% %’8 E 9 / 0 12 J-;2 !# E H!2% /:7% / ? $- 5% G ’7
) )% ?’ + J-;2 !# 7 /
A’2 . A (’ + ) ’ E 9 J-;2 !#
/ – -( ’!<% )% ?G ’7 )
9 7 E 9 / 0 12 , 0
.[14] ’ %’8’ 2 # , 4 -7%1 ># 0
) Y3 G ’7 _ !N;2 J-;2 !# ?$ %’ 26 – 9 / ( J 46 /) 7% HF
J-;2 !# O% 6 _ !N;2 C%’– /), ? %
) / J 46 /) % % 4 32 % HF 6’ $-, .[17] ( 3 N;2 z’9 M’ M 2 4 1] I:7 ? -9T 0 /3- M’ M 2 ?%y – ’!<%

C ( b 8 ) 5 7 0 /2
.( -4 ? -4 J<() ’ y#

!0
/ 0 12 pH NS4 E ] X52 O%2%
2U- C ; /]-7 / .
$ % ( ’)V . A
2U – ’ 26 E> 2% ) 5 7 /]-7 / & %’( ) 5 7 4 2 J-;2 !# E D% . ( E’! ) /) % /2 / % C +! 1-2
E> 2% ) 5 7 ?&7 ! @) D% J-;2 !#
/ 2U- ’ ) 5 7 Q R ) 5 7 26
/ 5% ) 3 J D 4% D
?’ ) J-;2 !# ( % ’ -% O
2’ -# 2U- ’ ) 5 7
% J < H2 26 E> 2% /) , %
’c% ’ 5 -; 1 ># J-;2 !# . % D ’
&- X52 O%2% ? S8 2U- C ; /:7% . / 0 12 pH
. 2 -# b 8 / 2U – ’ ) 5 7 % 5% /) ?/!-]-!)% ) C ( 5% 6 7 K !2 # <7 ’<- ’ ?$- ^@ 4 -7%1 >#
J-;2 !# %1 % /) ; % ’Z2 – ;<( = :7
1-2 / X52 -7 ;, D% E> 2% O1-2 < 4 E 9 / / . ( ’ ) * +, K % J-;2 !# 26
-756 E 9 -950 mVCu/CuSO4 -850) / \ :
b 8 ?( -856 mVAg/AgCl ’)V & %’( ) * +, 4 / \ :
.;-2 E !,% 5% (
E> 2% ?& %’( $ % ) E’! )
. ( M’ M 2 26
?(-1016mVAg/AgCl -1000) O 7 /H: 4 -7%1 ># E D% J- / 4 ’ /!-;2% C%’–
2 1 ?& %’( $ % ? 7% O /H: / 3 ?)
G ’7 / N;2 /!; 6 4 ’ /!-;2%
5 ’ 2U- ’ ) 5 7 /N]R ’Z2 –
) 26 E> 2% ( /H: $ %
M’ ’3-# ) 0 ) J D 4% D / (M’ M 2
/ -7 ;, %1 % ’ ? IE IR %1 % . 3
$ % ) 4 -7%1 ># %1 %
.(3J<() )
?( -2000mVAg/AgCl -1016) O^ /H:
%’8 ) 4 -7%1 ># ’ M’ M 2 %
M’ % M 2 4U- -,% & %’( $ % . 2 %
4U- @ % V +2 ) )% $ ’ @
.’ ’ ;<( b 8 QN7 1] / – 5 4
%1 % QN7 $ % ) 4 -7%1 ># %1 % ? ( ;<( I:7 U ’ ;<( @ 7 mVAg/AgCl -1500 ’ / -3- /) % /2 / / / .( -4 -4J<() ’ 3 -2000 ( ) – -( ’!<% J D 4 1 ’-cd /)$ % 5 ’ ( 33) /+ t ) <-2 < J D
/) /!<2 $ % / / 7% ’T ’ %
% ) 4 -7%1 ># %’8’ & %’(
%y ?’ – -( ’!<% J D }y, QN7 M’ M 2
/H: $ % b 8 & %’(
5% ’-R ’Z % # ( 2 –
5 % H J- / .’ /9:8 ;<( uD
O% 2% ?& %’( $ % – 4U – @ % %1P J D 0 4% D /) 2U – ’ J- / X52

Refrences
Z. Y. Liu, X. G. Li, C. W. Du and Y.F.Cheng, “Local Additional Potential Model for Effect of Strain Rate on SCC of Pipeline Steel in an Acidic soil Solution,” Corrosion Science, vol. 51, no. 12, pp. 2863-2871, 2009.
M.C.Li, and Y.F.Cheng, “Corrosion of the Stressed Pipe Steel in Carbonate– Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy,” Electrochimica Acta, vol. 53, No. 6, pp. 2831-2836, 2008.
G. V. Boven, W.Chen, and R.Rogge,
“The Role of Residual Stress in Neutral pH
Stress Corrosion Cracking of Pipe Line Steels. Part I: Pitting and Cracking Occurrence,” Acta Materialia, vol. 55, no. 1, pp. 29-42, 2007.
Y.F.Cheng, and L.Niu, “Mechanism for
Hydrogen Evolution Reaction on Pipe Line
Steel in Near-Neutral pH Solution,” Electrochemistry Communications, vol. 9, no. 4, pp. 558-562, 2007.
B.Gu, J.L.Luo, W.Z.Yu, and X. Mao, “Transgranular Stress Corrosion Cracking of X-80 and X-52 Pipe Line Steels in Dilute Aqueous Solution with NearNeutral pH,” Corrosion, vol. 55, no. 03, pp. 312-318, 1999.
B.Y.Fang, A.Atrens, J.Q.Wang, E.H. Han, Z.Y. Zhu, and W. Ke, “Review of
Stress Corrosion Cracking of Pipe Line Steels in “Low” and “High” pH Solutions,” Journal of Materials Science, vol. 38, no. 1, pp. 127-132, 2003.
T.M.Ahmed, S.B.Lambert, A.Plumtree, and R.Sutherby, “Cyclic Crack Growth Rates of X-60 Pipeline Steel in a Neutral Dilute Solution,” Corrosion, vol. 53, no. 07, pp. 581-590, 1997.
M.P.H. Brongers, B.S. Delanty, J.A. Beavers, and C.E. Jaske, “Effect of Hydrostatic Testing on Ductile Tearing of X-65 Line Pipe Steel with Stress Corrosion Cracks,” Corrosion, vol. 56, no. 10, pp. 1050-1058, 2000.
L.Niu, and Y.F.Cheng, “Corrosion
Behavior of X-70 Pipe Steel in NearNeutral pH Solution,” Applied Surface Science, vol. 253, no. 21, pp. 8626-8631, 2007.
B.Gu, J.Luo, and X. Mao, “HydrogenFacilitated Anodic Dissolution-Type Stress Corrosion Cracking of Pipeline Steels in Near-Neutral pH Solution,” Corrosion, vol. 55, no. 01, pp. 96-106, 1999.
J.G. Gonzalez-Rodriguez, M. Casales, V.M. Salinas-Bravo, L. Martinez, and J.L.
Albarran, “Effect of Microstructure on the Stress Corrosion Cracking of X-80 Pipeline Steel in Diluted Sodium Bicarbonate Solutions,” Corrosion, vol. 58, no. 07, pp. 584-590, 2002.
W.B. Lisagor, “Environmental Cracking- Stress Corrosion,” Corrosion Tests And Standards R.Baboian, ed., pp. 292-293, Baltimore: ASTM, 2005.
Z.Y. Liu, X.G. Li, C.W. Du, G. L. Zhai, and Y.F. Cheng, “Stress Corrosion Cracking Behavior of X70 Pipe Steel in an Acidic Soil Environment,” Corrosion Science, vol. 50, no. 8, pp. 2251-2257, 2008.
Z. Y. Liu, X. G. Li, and Y. F. Cheng,
“Mechanistic Aspect of Near-Neutral pH Stress Corrosion Cracking of Pipe Lines
Under Cathodic Polarization,” Corrosion Science, vol. 55, No. 0, pp. 54-60, 2012.
Z. Liu, G. Zhai, X.Li, and C. Du, “Effect of Deteriorated Microstructures on Stress Corrosion Cracking of X70 Pipeline Steel in Acidic Soil Environment,” Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, vol. 15, No. 6, pp. 707-713, 2008. 16- NACE, “TM0198: Slow Strain Rate
Test Method for Screening CorrosionResistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service,” NACE International, 2004. 17- R.N.Parkins, “Predictive Approaches to Stress Corrosion Cracking Failure,” Corrosion Science, vol. 20, No. 2, pp. 147166, 1980.

1
.API 5L X52 ! ’ G +$ -1C ’D C Si Mn P S Al Cu Nb Ni
25 0/09 0/186 0/867 0/006 0/003 0/016 0/01 0/023 0/016
. [5]NS4C & ’ G +$ -2C L]R – -( 0/483(g/l) (NaHCO3)@ 7 C ’<- 0/122(g/l) (KCl)@-7 !# ’]) 0/137(g/l) (CaCl2)@-;]) ’]) 0/131(g/l) (MgSO4.7H2O)@ 1- C + 7

. [16] 6 “+ 7+ , “8 9 :; *@ -1-B

.’2#) , 3 pH , 1& X52 ! “+-“#$ ’#&# -2-B



قیمت: تومان


پاسخ دهید